Effects of Dietary Vitamin D3 Over-Supplementation on Broiler Chickens' Health; Clinicopathological and Immunohistochemical Characteristics

Main Article Content

Rahul Kumar
Harmanjit Singh Banga
Rajinder Singh Brar

Abstract

Introduction: Vitamin D3 is used as a supplement in the feeds of livestock, pets, and human infants. However, the presence of excessive Vitamin D3 has been shown to cause toxicity in humans and animals. This study investigated the clinicopathological aspects of Vitamin D3 toxicity in broiler chickens.


Materials and methods: The median lethal dose (LD50) of Vitamin D3 was estimated by the up-and-down method. To determine long term (21 days) toxic effects of oral Vitamin D3 supplementation, 90 (14-day-old) IBL-80 unsexed chicks were randomly divided into three groups as group A (control, received basal diet), B (basal diet + Vitamin D3 at 16.67 mg/kg body weight daily), and C (basal diet + Vitamin D3 at 33.33 mg/kg body weight daily).


Results: The findings indicated that broiler chickens tolerated a single oral dose of Vitamin D3 up to 550 mg/kg body weight (22,000,000 IU/kg) without mortality. The results of long-term (21 days) oral supplementation of divided doses of Vitamin D3 in broiler chickens (groups B and C) showed progressive emaciation, elevated hemoglobin, hypercalcemia, hypophosphatemia, and increased alkaline phosphatase activity. At necropsy, pale liver and kidneys, congestion and hardening of lungs, mild congestion in the brain, and soft bones were observed in Vitamin D3 treated chicks (groups B and C). Microscopically, degeneration and metastatic calcification in lung parenchyma and peribronchiolar epithelium, coagulative necrosis and calcification in kidneys, and calcification with fibroplasia in proventriculus was detected. Lungs and kidneys showed a significant difference in calcification score between groups B and C. Broiler chickens from Vitamin D3 treated groups (B and C) showed strong immunohistochemical expression of Calbindin D28K in the intestine and kidneys but weak expression in the lungs.


Conclusion: This study demonstrates that broiler chicks can tolerate very high levels of a single oral dose of Vitamin D3. Toxic effects of prolonged exposure to Vitamin D3 are due to over-expression of Calbindin D28k in the intestine and kidneys, disturbing the calcium and phosphorous homeostasis and leading to metastatic calcification of vital organs. This study supports that prolonged over-supplementation of Vitamin D3 causes toxic effects; hence, appropriate dietary Vitamin D3 supplementation limits should be set.

Article Details

How to Cite
Kumar, R., Singh Banga, H., & Singh Brar, R. (2023). Effects of Dietary Vitamin D3 Over-Supplementation on Broiler Chickens’ Health; Clinicopathological and Immunohistochemical Characteristics . Journal of Veterinary Physiology and Pathology, 2(2), 20–31. https://doi.org/10.58803/jvpp.v2i2.21
Section
Original Articles

References

Bikle DD. Vitamin D: Newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab. 2010; 21(6): 375-384. DOI: https://doi.org/10.1016/j.tem.2010.01.003

Norman AW, and Bouillon R. Vitamin D nutritional policy needs a vision for the future. Exp Biol Med. 2010; 235(9): 1034-1045. DOI: https://doi.org/10.1258/ebm.2010.010014

Babazadeh D, Razavi SA, Abd El-Ghany WA, and F Cotter P. Vitamin D deficiency in farm animals: A review. Farm Anim Health Nutr. 2022; 1(1): 10-16. DOI: https://doi.org/10.58803/fahn.v1i1.7

Bronner F, Pansu D, and Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol Gastrointest Liver Physiol. 1986; 250(5): G561-G569. DOI: https://doi.org/10.1152/ajpgi.1986.250.5.G561

Sugiyama T, Kikuchi H, Hiyama S, Nishizawa K, and Kusuhara S. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen. Br Poult Sci. 2007; 48(2): 233-238. DOI: https://doi.org/10.1080/00071660701302270

Kumar R, Brar RS, and Banga HS. Hypervitaminosis D3 in broiler chicks: Histopathological, immunomodulatory and immunohistochemical approach. Iran J Vet Res. 2017; 18(3): 170-176. PMCID: PMC5674439

Smith SE. Vitamins. In: Swenson M J, editor. Duke’s physiology of domestic animals. Cornell University Press, Ithaca and London: Comstock Publishing Associate; 1982. p. 380-382.

National research council (NRC). Nutrient requirements of poultry. 9th rev ed. Washington, DC, USA: National Academy Press; 1994. Available at: https://nap.nationalacademies.org/catalog/2114/nutrient-requirements-of-poultry-ninth-revised-edition-1994

Hunt RD, Garcia FG, and Walsh RJ. A comparison of the toxicity of ergocalciferol and cholecalciferol in rhesus monkeys (Macaca mulatta). J Nutr. 1972; 102(8): 975-986. DOI: https://doi.org/10.1093/jn/102.8.975

Long GG. Acute toxicosis in swine associated with excessive dietary intake of Vitamin D. JAVMA. 1984; 184(2), 164-170. PMID: 6321415

Morita T, Awakura T, Shimada A, Umemura T, Nagai T, and Haruna A. Vitamin D toxicosis in cats: Natural outbreak and experimental study. J Vet Med Sci. 1995; 57(5): 831-837. DOI: https://doi.org/10.1292/jvms.57.831

Roberson JR, Swecker Jr WS, and Hullender LL. Hypercalcemia and hypervitaminosis D in two lambs. J Am Vet Med Assoc. 2000; 216(7): 1115-1118. DOI: https://doi.org/10.2460/javma.2000.216.1115

Rumbeiha WK. Specific toxicants: Cholecalciferol. In: Peterson ME, Talcott PA, editor. Small animal toxicology. St. Louis, Missouri, USA: Saunders Elsevier; 2006; p. 629-642. DOI: https://doi.org/10.1016/B0-72-160639-3/50039-3

Sun ZW, Yan L, Zhao JP, Lin H, and Guo YM. Increasing dietary Vitamin D3 improves the walking ability and welfare status of broiler chickens reared at high stocking densities. Poult Sci. 2013; 92(12): 3071-3079. DOI: https://doi.org/10.3382/ps.2013-03278

Fritts CA, and Waldroup PW. Comparison of cholecalciferol and 25-hydroxycholecalciferol in broiler diets designed to minimize phosphorus excretion. J Appl Poult Res. 2005; 14(1): 156-166. DOI: https://doi.org/10.1093/japr/14.1.156

Takeda M, Yamashita T, Sasaki N, Nakajima K, Kita T, Shinohara M, et al. Oral administration of an active form of Vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions.

Arterioscler Thromb Vasc Biol. 2010; 30(12): 2495-2503. DOI: https://doi.org/10.1161/ATVBAHA.110.215459

Gómez-Verduzco G, Morales-López R, and Avila-Gozàlez E. Use of 25-hydroxycholecalciferol in diets of broiler chickens: Effects on growth performance, immunity and bone calcification. J Poult Sci, 2013; 50(1): 60-64. DOI: https://doi.org/10.2141/jpsa.0120071

Mabelebele M, Ng’Ambi JW, and Norris D. Effect of dietary Vitamin D3 supplementation on meat quality of naked neck chickens.

Afr J Biotechnol. 2013; 12(22): 3576-3582. Available at: https://www.ajol.info/index.php/ajb/article/view/132058

Whitehead CC, McCormack HA, McTeir L, and Fleming RH. High vitamin D3 requirements in broilers for bone quality and prevention of tibial dyschondroplasia and interactions with dietary calcium, available phosphorus and Vitamin A. Br Poult Sci. 2004; 45(3): 425-436. DOI: https://doi.org/10.1080/00071660410001730941

Rao SR, Raju MVLN, Panda AK, Sunder GS, and Sharma RP. Effect of high concentrations of cholecalciferol on growth, bone mineralization, and mineral retention in broiler chicks fed suboptimal concentrations of calcium and nonphytate phosphorus. J Appl Poult Res. 2006; 15(4): 493-501. DOI: https://doi.org/10.1093/japr/15.4.493

Rao RSV, Raju MVLN, Panda AK, Shyam Sunder G, and Sharma RP. Performance and bone mineralisation in broiler chicks fed on diets with different concentrations of cholecalciferol at a constant ratio of calcium to non-phytate phosphorus. Br Poult Sci. 2009; 50(4): 528-535. DOI: https://doi.org/10.1080/00071660903125826

Khan SH, Shahid R, Mian AA, Sardar R, and Anjum MA. Effect of the level of cholecalciferol supplementation of broiler diets on the performance and tibial dyschondroplasia. Anim Physiol Anim Nutr. 2010; 94(5): 584-593. DOI: https://doi.org/10.1111/j.1439-0396.2009.00943.x

Khan SH, and Mukhtar N. Dynamic role of cholecalciferol in commercial chicken performance. Worlds Poult Sci J. 2013; 69(3): 587-600. DOI: https://doi.org/10.1017/S0043933913000597

Świątkiewicz S, Arczewska-Włosek A, Bederska-Lojewska D, and Józefiak D. Efficacy of dietary vitamin D and its metabolites in poultry-review and implications of the recent studies. Worlds Poult Sci J. 2017; 73(1): 57-68. DOI: https://doi.org/10.1017/S0043933916001057

Nain S, Laarveld B, Wojnarowicz C, and Olkowski AA. Excessive dietary vitamin D supplementation as a risk factor for sudden death syndrome in fast growing commercial broilers. Comp Biochem Physiol Part A Mol Integr Physiol. 2007; 148(4): 828-833. DOI: https://doi.org/10.1016/j.cbpa.2007.08.023

Baker DH, Biehl RR, and Emmert JL. Vitamin D3 requirement of young chicks receiving diets varying in calcium and available phosphorus. Br Poult Sci. 1998; 39(3): 413-417. DOI: https://doi.org/10.1080/00071669888980

Persia ME, Higgins M, Wang T, Trample D, and Bobeck EA. Effects of long-term supplementation of laying hens with high concentrations of cholecalciferol on performance and egg quality. Poult Sci. 2013; 92(11): 2930-2937. DOI: https://doi.org/10.3382/ps.2013-03243

Bruce RD. An up-and-down procedure for acute toxicity testing. Fundam Appl Toxicol. 1985; 5(1): 151-157. DOI: https://doi.org/10.1016/0272-0590(85)90059-4

U. S. environmental protection agency (USEPA). Test guidelines/acute toxicity — Acute oral toxicity up-and-down procedure. 2003. Available at: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/acute-oral-toxicity-and-down-procedure

Benjamin MM. Outline of veterinary clinical pathology. 3rded. Ludhiana, India: Kalyani Publishers; 1985; p. 25, 48, 60.

Luna LG. Manual of histological staining methods of armed forces institute of pathology. 3rd ed. New York, USA: Mc Graw Hill Book Company; 1968. p. 32-36. Available at: https://pesquisa.bvsalud.org/ portal/resource/pt/biblio-1081120

Soares Jr JH, Kerr JM, Gray RW. 25-hydroxycholecalciferol in poultry nutrition. Poult. Sci. 1995; 74(12): 1919-1934. DOI: https://doi.org/10.3382/ps.0741919

Green J, and Persia ME. The effects of feeding high concentrations of cholecalciferol, phytase, or their combination on broiler chicks fed various concentrations of nonphytate phosphorus. J Appl Poult Res. 2012; 21(3): 579-587. DOI: https://doi.org/10.3382/japr.2011-00483

Schoemaker NJ, Lumeij JT, and Beynen AC. Polyuria and polydipsia due to vitamin and mineral oversupplementation of the diet of a salmon crested cockatoo (Cacatua moluccensis) and a blue and gold macaw (Araararauna). Avian Pathol, 1997; 26(1): 201-209. DOI: https://doi.org/10.1080/03079459708419206

Machlin LJ. Handbook of vitamins. New York: Marcel Dekker, Inc; 1984.

Meric SM. In: Ettiner SJ, Feldman EC, editors. Textbook of internal medicine. Philadelphia. Saunders; 1995. p. 159-163.

Kaneko JJ, Harvey JW, and Bruss ML, editors. Clinical biochemistry of domestic animals. Academic press. 2008.

Morrow C. Cholecalciferol poisoning. Vet Med. 2001; 96(12): 905-911.

Braun U, Diener M, Camenzind D, Flückiger M, and Thoma R. Enzootic calcinosis in goats caused by golden oat grass (Trisetum flavescens). Vet Rec, 2000; 146(6): 161-162. DOI: https://doi.org/10.1136/vr.146.6.161

Radostits OM, Gay CC, Blood DC, and Hinchcliff KW. Veterinary medicine- A textbook of the diseases of cattle, sheep, pigs, goats and horses. 9th Ed. (formerly ELST), UK: Book Power. 2000; p. 561, 563, 1543,

Available at: https://www.cabdirect.org/cabdirect/abstract/ 19942214281

Sandhu HS, and Brar RS. Textbook of veterinary toxicology. 2nd ed. Ludhiana: Kalyani Publishers. 2009; p. 245.

Morrissey RL, Cohn RM, Empson Jr RN, Greene HL, Taunton OD, and Ziporin ZZ. Relative toxicity and metabolic effects of cholecalciferol and 25-hydroxycholecalciferol in chicks. J Nutri. 1977; 107(6): 1027-1034. DOI: https://doi.org/10.1093/jn/107.6.1027

Chavhan SG, Brar RS, Banga HS, Sandhu HS, Sodhi S, Gadhave PD, et al. Clinicopathological studies on vitamin D3 toxicity and therapeutic evaluation of Aloe vera in rats. Toxicol Int, 2011; 18(1): 35-43. DOI: https://doi.org/10.4103/0971-6580.75851

Harrington DD, and Page EH. Acute vitamin D3 toxicosis in horses: Case reports and experimental studies of the comparative toxicity of vitamins D2 and D3. J Am Vet Med Assoc, 1983; 182(12): 1358-1369. PMID: 6307954

Kumar R, Brar RS, Banga HS, and Sodhi S. Biochemical alterations in hypervitaminosis D3 in broiler chicks concomitantly challenged with endotoxin. J World Poult Res. 2018; 8(4): 100-104. Available at: https://jwpr.scienceline.com/attachments/article/47/J%20World%20Poult%20Res%208(4)%20100-104,%202018.pdf

Abdi-Hachesoo B, Talebi A, and Asri-Rezaei S. Comparative study on blood profiles of indigenous and Ross-308 broiler breeders. Glob Vet. 2011; 7(3): 238-241. Available at: https://www.idosi.org/gv/GV7(3)11/6.pdf

Taylor TG, Morris KML, and Kirkley J. Effects of dietary excesses of vitamins A and D on some constituents of the blood of chicks. Br J Nutr. 1968; 22(4): 713-721. DOI: https://doi.org/10.1079/BJN19680081

Beasley VR. Veterinary toxicology. International Veterinary Information Service. Ithaca, New York. 1999.

Aburto A, and Britton WM. Effects and interactions of dietary levels of vitamins A and E and cholecalciferol in broiler chickens. Poult Sci, 1998; 77(5): 666-673. DOI: https://doi.org/10.1093/ps/77.5.666

Reichel H, Koeffler HP, and Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med. 1989; 320(15): 980-991. DOI: https://doi.org/10.1056/NEJM198904133201506

Lumeij JT. Avian medicine. Principles and Applications In: RitchieBW, Harrison GH, Harrison LR, editors. Lake Worth, FL: Wingers; 1994; p. 582-606.

Norman AW. Vitamin D. Present knowledge of nutrition. 7th ed. Washington: 1996.

Pettifor JM, Bikle DD, Cavaleros M, Zachen D, Kamdar MC, and Ross FP. Serum levels of free 1, 25-dihydroxyvitamin D in Vitamin D toxicity. Ann Intern Med. 1995; 122(7): 511-513. DOI: https://doi.org/10.7326/0003-4819-122-7-199504010-00006

Scheftel J, Setzer S, Walser M, Pertile T, Hegstad RL, Felice LJ, et al. Elevated 25-hydroxy and normal 1, 25-dihydroxy cholecalciferol serum concentrations in a successfully treated case of Vitamin D3 toxicosis in a dog. Vet Hum Toxicol. 1991; 33(4): 345-348. PMID: 1654665

Price PA, Buckley JR, and Williamson MK. The amino bisphosphonate ibandronate prevents Vitamin D toxicity and inhibits vitamin D-induced calcification of arteries, cartilage, lungs and kidneys in rats. J Nutri. 2001; 131(11): 2910-2915. DOI: https://doi.org/10.1093/jn/131.11.2910

Metz AL, Walser MM, and Olson WG. The interaction of dietary vitamin A and vitamin D related to skeletal development in the turkey poult. J Nutri. 1985; 115(7): 929-935. DOI: https://doi.org/10.1093/jn/115.7.929

Roth J, Thorens B, Hunziker W, Norman AW, and Orci L. Vitamin D—dependent calcium binding protein: Immunocytochemical localization in chick kidney. Science. 1981; 214(4517): 197-200. DOI: https://doi.org/10.1126/science.7025212

Bronner F, Pansu D, and Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol. 1986; 250: G561-G569. DOI: https://doi.org/10.1152/ajpgi.1986.250.5.G561

Wu JC, Smith MW, Mitchell MA, Peacock MA, Turvey A, and Keable SJ. Enterocyte expression of calbindin, calbindin mRNA and calcium transport increases in jejunal tissue during onset of egg production in the fowl (Gallus domesticus). Comp Biochem Physiol. 1993; 106(2): 263-269. DOI: https://doi.org/10.1016/0300-9629(93)90510-B

Hurwitz S, and Bar A. Relation between the lumen-blood electrochemical potential difference of calcium, calcium absorption and calcium-binding protein in the intestine of the fowl. J Nutr, 1969; 99(2): 217-224. DOI: https://doi.org/10.1093/jn/99.2.217

Yosefi S, Braw-Tal R, and Bar A. Intestinal and eggshell calbindin, and bone ash of laying hens as influenced by age and molting. Comp Biochem Physiol Part A: Mol Integ Physiol. 2003; 136(3): 673-682. DOI: https://doi.org/10.1016/S1095-6433(03)00244-7

Hsiao FSH, Cheng YH, Han JC, Chang MH, and Yu YH. Effect of different vitamin D 3 metabolites on intestinal calcium homeostasis-related gene expression in broiler chickens. R Bras Zootec. 2018; 47: e20170015. DOI: https://doi.org/10.1590/rbz4720170015

Brehier A, and Thomasset M. Stimulation of calbindin-D9K (CaBP9K) gene expression by calcium and 1, 25-dihydroxycholecalciferol in fetal rat duodenal organ culture. Endocrinology. 1990; 127(2): 580-587. DOI: https://doi.org/10.1210/endo-127-2-580

Hall AK, and Norman AW. Regulation of calbindin‐D28K gene expression by 1, 25‐dihydroxyvitamin D3 in chick kidney. J Bone Miner Res. 1990; 5(4): 325-330. DOI: https://doi.org/10.1002/jbmr.5650050404

Ferrari S, Molinari S, Battini R, Cossu G, and Lamon-Fava S. Induction of calbindin-D28k by 1, 25-dihydroxyvitamin D3 in cultured chicken intestinal cells Exp Cell Res. 1992; 200(2): 528-531. DOI: https://doi.org/10.1016/0014-4827(92)90205-M

Hoenderop JG, Van der Kemp AW, Urben CM, Strugnell SA, and Bindels RJ. Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice1. Kidney Int. 2004; 66(3): 1082-1089. DOI: https://doi.org/10.1111/j.1523-1755.2004.00858.x