Nanotechnology-based Approaches for the Treatment of Toxocariasis: A Prospective Review

Main Article Content

Ali Jahanmahin
Hassan Borji

Abstract

Toxocariasis, caused by Toxocara parasites, is a prevalent parasitic disease affecting millions of people worldwide. Conventional anthelmintic drugs for toxocariasis face challenges such as limited efficacy and potential adverse effects, necessitating exploring alternative therapeutic strategies. Nanotechnology has emerged as a promising approach for the treatment of toxocariasis. This prospective review provides an overview of the potential of nanotechnology in toxocariasis treatment and highlights critical advancements in the field. The current review aimed to provide an overview of toxocariasis and the current challenges in its treatment, such as limited efficacy and potential adverse effects. It emphasized the need for novel therapeutic approaches to overcome these limitations. The subsequent section focused on nanoparticle-based drug delivery systems, discussing the nanoparticles used in toxocariasis treatment, their advantages, and strategies for enhancing drug delivery efficiency. Nanotechnology in targeted therapy is a great strategy to treat toxocariasis. It explored targeting Toxocara parasites using nanoparticles, surface modifications for enhanced targeting, and controlled release and sustained drug delivery techniques. Nanodiagnostics and imaging techniques in diagnosing and monitoring provide promising futures for controlling toxocariasis. It explored the use of nanosensors for the sensitive detection of Toxocara parasites and various imaging modalities for parasite visualization. These advancements enabled timely intervention and personalized treatment strategies. Furthermore, the application of nanotechnology in vaccine development is fruitful for preventing toxocariasis. It highlights the use of nano vaccines for enhanced immune responses, controlled antigen delivery, and targeted immune cell activation. In conclusion, nanotechnology holds immense potential in the treatment of toxocariasis. Its unique features, such as targeted drug delivery, enhanced diagnostics, and improved vaccine efficacy, offer promising avenues for more effective and personalized approaches. Addressing evaluation, regulatory approval, cost-effectiveness, and scalability challenges is crucial for successful translation into clinical practice. The advancements in nanotechnology can potentially revolutionize toxocariasis treatment and improve patient outcomes.

Article Details

How to Cite
Jahanmahin, A., & Borji, H. (2023). Nanotechnology-based Approaches for the Treatment of Toxocariasis: A Prospective Review . Journal of Veterinary Physiology and Pathology, 2(2), 12–19. https://doi.org/10.58803/jvpp.v2i2.24
Section
Review Article

References

Lotfalizadeh N, Sadr S, Moghaddam S, Najjar M, Khakshoor A, Ahmadi Simab P. The innate immunity defense against gastrointestinal nematodes: Vaccine development. Farm Anim Health and Nut. 2022; 1(2): 31-38. DOI: 10.58803/fahn.v1i2.10

Düzlü Ö, Inci A, Yıldırım A, Doğanay M, Özbel Y, and Aksoy S. Vector-borne zoonotic diseases in Turkey: Rising threats on public

health. Turkiye Parazitol Derg. 2020; 44(3): 168. DOI: 10.4274/tpd.galenos.2020.6985

Asouli A, Sadr S, Mohebalian H, and Borji H. Anti-tumor effect of protoscolex hydatid cyst somatic antigen on inhibition cell growth of K562. Acta Parasitol. 2023; 68(2): 385-392. DOI: 10.1007/s11686-023-00680-3

Sadr S, Charbgoo A, Borji H, and Hajjafari A. Interactions between innate immunity system and Echinococcus granulosus: Permission for vaccine development. Series Med Sci. 2022; 3(1): 1-18. Available at: https://seriesscience.com/wp-content/uploads/2023/01/

Interactions-between-Innate-Immunity.pdf

Sadr S, Yousefsani Z, Ahmadi Simab P, Jafari Rahbar Alizadeh A, Lotfalizadeh N, and Borji H. Trichinella spiralis as a potential antitumor agent: An update. World’s Vet J. 2023; 13(1): 65-74. DOI: 10.54203/scil.2023.wvj7

Li H, Chen Y, Machalaba CC, Tang H, Chmura AA, Fielder MD, et al. Wild animal and zoonotic disease risk management and regulation in China: Examining gaps and one health opportunities in scope, mandates, and monitoring systems. One Health. 2021; 13: 100301. DOI: 10.1016/j.onehlt.2021.100301

Aggarwal D, and Ramachandran A. One health approach to address zoonotic diseases. Indian J Community Med. 2020; 45(Suppl 1): S6-S8. DOI: 10.4103/ijcm.IJCM_398_19

Healy SR, Morgan ER, Prada JM, and Betson M. Brain food: Rethinking food-borne toxocariasis. Parasitology. 2022; 149(1): 1-9. DOI: 10.1017/S0031182021001591

Meliou M, Mavridis IN, Pyrgelis ES, and Agapiou E. Toxocariasis of the nervous system. Acta Parasitol. 2020; 65: 291-299. DOI: 10.2478/s11686-019-00166-1

Kong L, and Peng HJ. Current epidemic situation of human toxocariasis in China. Adv Parasitol. 2020; 109: 433-48. DOI: 10.1016/bs.apar.2020.01.016

Wu T, and Bowman DD. Visceral larval migrans of Toxocara canis and Toxocara cati in non-canid and non-felid hosts. Adv Parasitol. 2020; 109: 63-88. DOI: 10.1016/bs.apar.2020.02.001

Mengarda AC, Silva TC, Silva AS, Roquini DB, Fernandes JPS, and de Moraes J. Toward anthelmintic drug candidates for toxocariasis: Challenges and recent developments. Eur J Med Chem. 2023; 251: 115268. DOI: 10.1016/j.ejmech.2023.115268

Chai JY, Jung BK, and Hong SJ. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: An update. Korean J Parasitol. 2021; 59(3): 189-225. DOI: 10.3347/kjp.2021.59.3.189

Liu M, Panda SK, and Luyten W. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules. 2020; 10(3): 426. DOI: 10.3390/biom10030426

Kudtarkar A, Shinde U, P Bharkad G, and Singh K. Solid lipid nanoparticles of albendazole for treatment of Toxocara canis infection: In-vivo efficacy studies. Nanoscience Nanotechnology-Asia. 2017; 7(1): 80-91. DOI: 10.2174/2210681206666160726164457

Saeed M, Sadr S, Gharib A, Lotfalizadeh N, Hajjafari A, Simab PA, et al. Phytosomes: A promising nanocarrier for enhanced delivery of herbal compounds in cancer therapy. J Lab Anim Res. 2022; 1(1): 26-32. Available at: https://jlar.rovedar.com/index.php/JLAR/article/view/8

Mengarda AC, Iles B, Longo JPF, and de Moraes J. Recent approaches in nanocarrier‐based therapies for neglected tropical diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023; 15(2): e1852. DOI: 10.1002/wnan.1852

Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, and Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021; 63: 102487. DOI: 10.1016/j.jddst.2021.102487

Mohammadi K, Sani MA, Azizi-Lalabadi M, and McClements DJ. Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci. 2022; 2022: 102734. DOI: 10.1016/j.cis.2022.102734

Abbasi AM and Eftekhari Hasan Abad MR. The role of mesenchymal stem cell therapy in echinococcus granulosus treatment: A prospective review. J Lab Anim Res, 2023; 2(2): 6-10. Available at: https://jlar.rovedar.com/index.php/JLAR/article/view/15

Aranda PR, Messina GA, Bertolino FA, Pereira SV, Baldo MAF, and Raba J. Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchem J. 2018; 141: 308-323. DOI: 10.1016/j.microc.2018.05.024

Mohammadi Aloucheh R, Alaee Mollabashi Y, Asadi A, Baris O, and Gholamzadeh S. The role of nanobiosensors in identifying pathogens and environmental hazards. Anthropog Pollut J. 2018; 2(2): 16-25. Available at: https://ap.ardabil.iau.ir/article_543109_456771351b

f66a327aeaf9964dfc6b79.pdf

Zawawi A, and Else KJ. Soil-transmitted helminth vaccines: Are we getting closer?. Front Immunol. 2020; 11: 576748. DOI: 10.3389/fimmu.2020.576748

Molento MB, and Arenal A. The breakthrough of nanotechnology to veterinary parasitology research. LALIOTIS, GP current research in agriculture and veterinary science. London: Publisher International; 2020: p. 71-77.

Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, et al. Toxicity of metal-organic framework nanoparticles: From essential analyses to potential applications. Chem Soc Rev. 2022; 51(2): 464-484. DOI: 10.1039/D1CS00918D

Haleem A, Javaid M, Singh RP, Rab S, and Suman R. Applications of nanotechnology in medical field. J Glob Health. 2023; 7(2): 70-77. DOI: 10.1016/j.glohj.2023.02.008

Ahmad A, Imran M, and Sharma N. Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics. 2022; 14(11): 2463. DOI: 10.3390/pharmaceutics14112463

Hrčkova G, Velebný S, Obwaller A, Auer H, and Kogan G. Evaluation of follow-up of therapy with fenbendazole incorporated into stabilized liposomes and immunomodulator glucan in mice infected with Toxocara canis larvae. Acta Trop. 2007; 104(2-3): 122-132. DOI: 10.1016/j.actatropica.2007.08.006

Horiuchi A, Satou T, Akao N, Koike K, Fujita K, and Nikaido T. The effect of free and polyethylene glycol-liposome-entrapped albendazole on larval mobility and number in Toxocara canis infected mice. Vet Parasitol. 2005; 129(1-2): 83-87. DOI: 10.1016/j.vetpar.2004.12.017

Dorostkar R, Ghalavand M, Nazarizadeh A, Tat M, and Hashemzadeh MS. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int Nano Lett. 2017; 7: 157-164. DOI: 10.1007/s40089-016-0198-3

Muraleedharan K, and Chhabra M. Nanotechnology applications and potential in parasitology: An overview. Vet Immunol Immunopathol. 2018; 1(1): 25-48. Available at: https://isvib.org/Download/

VIB%201(1)%20Final.pdf#page=33

Barrera MG, Leonardi D, Bolmaro RE, Echenique CG, Olivieri AC, Salomon CJ, et al. In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis larva migrans. Eur J Pharm Biopharm. 2010; 75(3): 451-454. DOI: 10.1016/j.ejpb.2010.03.017

Sanabria R. Nanotechnological improvement of veterinary anthelmintics. Pharm Nanotechnol. 2021; 9(1): 5-14. DOI: 10.2174/2211738508666200524233724

Zazo H, Colino CI, and Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016; 224: 86-102. DOI: 10.1016/j.jconrel.2016.01.008

Aminu N, Bello I, Umar NM, Tanko N, Aminu A, and Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. J Drug Deliv Sci Technol. 2020; 60: 101961. DOI: 10.1016/j.jddst.2020.101961

Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, et al. Curcumin nanoparticles as promising therapeutic agents for

drug targets. Molecules. 2021; 26(16): 4998. DOI: 10.3390/molecules26164998

Movahedi F, Li L, Gu W, and Xu ZP. Nanoformulations of albendazole as effective anticancer and antiparasite agents. Nanomedicine. 2017; 12(20): 2555-2574. DOI: 10.2217/nnm-2017-0102

Santos-Valle ABC, Souza GR, Paes CQ, Miyazaki T, Silva AH, Altube MJ, et al. Nanomedicine strategies for addressing major needs in neglected tropical diseases. Annu Rev Control. 2019; 48: 423-441. DOI: 10.1016/j.arcontrol.2019.08.001

Badar A, Pachera S, Ansari A, and Lohiya N. Nano based drug delivery systems: Present and future prospects. Nanomed Nanotechnol J. 2019; 2(1): 121.

Lu M, Xiong D, Sun W, Yu T, Hu Z, Ding J, et al. Sustained release ivermectin-loaded solid lipid dispersion for subcutaneous delivery: In vitro and in vivo evaluation. Drug Deliv. 2017; 24(1): 622-631. DOI: 10.1080/10717544.2017.1284945

Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, et al. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application. Nanomaterials. 2022; 12(8): 1333. DOI: 10.3390/nano12081333

Medawar V, Messina GA, Fernández-Baldo M, Raba J, and Pereira SV. Fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti-Toxocara canis. Microchem J. 2017; 130: 436-341. DOI: 10.1016/j.microc.2016.10.027

Solano R, Patiño-Ruiz D, Tejeda-Benitez L, and Herrera A. Metal-and metal/oxide-based engineered nanoparticles and nanostructures: A review on the applications, nanotoxicological effects, and risk control strategies. Environ Sci Pollut Res. 2021; 28: 16962-16981. DOI: 10.1007/s11356-021-12996-6

Ashour DS. Ivermectin: From theory to clinical application.

Int J Antimicrob Agents. 2019; 54(2): 134-142. DOI: 10.1016/j.ijantimicag.2019.05.003

Barua S, and Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014; 9(2): 223-243. DOI: 10.1016/j.nantod.2014.04.008

Petros RA, and DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010; 9(8): 615-627. DOI: 10.1038/nrd2591

Ullah H, Qadeer A, Rashid M, Rashid MI, and Cheng G. Recent advances in nucleic acid-based methods for detection of helminth infections and the perspective of biosensors for future development. Parasitology. 2020; 147(4): 383-392. DOI: 10.1017/S0031182019001665

Rogers MJ, McManus DP, Muhi S, and Gordon CA. Membrane technology for rapid point-of-care diagnostics for parasitic neglected tropical diseases. Clin Microbiol Rev. 2021; 34(4): e00329-20. DOI: 10.1128/CMR.00329-20

Yao J, Yang M, and Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014; 114(12): 6130-6178. DOI: 10.1021/cr200359p

Zhu H, Isikman SO, Mudanyali O, Greenbaum A, and Ozcan A. Optical imaging techniques for point-of-care diagnostics. Lab Chip. 2013; 13(1): 51-67. DOI: 10.1039/C2LC40864C

Stanicki D, Vangijzegem T, Ternad I, and Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv. 2022; 19(3): 321-335. DOI: 10.1080/17425247.2022.2047020

Chen J, Liu Q, Liu GH, Zheng WB, Hong SJ, Sugiyama H, et al. Toxocariasis: A silent threat with a progressive public health impact. Infect Dis Poverty. 2018; 7(1): 59. DOI: 10.1186/s40249-018-0437-0

Abaza SM. Applications of nanomedicine in parasitic diseases. Parasitol United J. 2016; 9(1): 1-6. DOI: 10.4103/1687-7942.192997

Zhang X, Liu X, Guo Y, and Wu FG. Strategies for visualizing inflammation. View. 2021; 2(1): 20200025. DOI: 10.1002/VIW.20200025

Shahrokhi A, Moradpour N, Siahsarvie R, and Borji H. An investigation of potentially zoonotic helminth parasites of allactaga elater in Sarakhs, Iran. J Lab Anim Rese. 2022; 1(1): 8-13. Available at: https://jlar.rovedar.com/index.php/JLAR/article/view/7

Haji Mohammadi K, Heidarpour M, Moosavi Z, and Borji H. Histopathological and biochemical evaluation of albendazole in the treatment of infected mice with hydatid cyst. J Lab Anim Rese. 2022; 1(1): 1-7. Available at: https://jlar.rovedar.com/index.php/JLAR/

article/view/6

Momčilović S, Cantacessi C, Arsić-Arsenijević V, Otranto D, and Tasić-Otašević S. Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clin Microbiol Infect. 2019; 25(3): 290-309. DOI: 10.1016/j.cmi.2018.04.028

Gomez-Gaviro MV, Sanderson D, Ripoll J, and Desco M. Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience. 2020; 23(8): 101432. DOI: 10.1016/j.isci.2020.101432

Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, and Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence. 2018; 9(1): 28-63. DOI: 10.1080/21505594.2017.1371897

Sathekge MM, Ankrah AO, Lawal I, and Vorster M. Monitoring response to therapy. Seminars in Nuclear Medicine. Elsevier; 2018. DOI: 10.1053/j.semnuclmed.2017.10.004

Noah NM, and Ndangili PM. Current trends of nanobiosensors for point-of-care diagnostics. J Anal Methods Chem. 2019; 2019: 2179718. DOI: 10.1155/2019/2179718

Sahoo S, Nayak A, Gadnayak A, Sahoo M, Dave S, Mohanty P, et al. Quantum dots enabled point-of-care diagnostics: A new dimension to the nanodiagnosis. Advanced nanomaterials for point of care diagnosis and therapy, Chapter 3. 2022. p. 43-52. DOI: 10.1016/B978-0-323-85725-3.00005-2

Mathur D, and Medintz IL. The growing development of DNA nanostructures for potential healthcare‐related applications. Adv Healthc Mater. 2019; 8(9): 1801546. DOI: 10.1002/adhm.201970035

Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, et al. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev. 2010; 62(11): 1094-1124. DOI: 10.1016/j.addr.2010.09.002

Fathima A, Chiome TJ, Catherine AA, Egbuna C, Achar RR, and Srinivasan A. Smart use of nanomaterials as sensors for detection and monitoring of food spoilage. In: Egbuna C, Jeevanandam J, C Patrick-Iwuanyanwu K, N Onyeike E, editors. Application of nanotechnology in food science, processing and packaging. Springer, Cham; 2022. p. 169-188. DOI: 10.1007/978-3-030-98820-3_11

Burakova Y, Madera R, McVey S, Schlup JR, and Shi J. Adjuvants for animal vaccines. Viral Immunol. 2018; 31(1): 11-22. DOI: 10.1089/vim.2017.0049

Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, and Manzano-Román R. Nanovaccines against animal pathogens: The latest findings. Vaccines. 2021; 9(9): 988. DOI: 10.3390/vaccines9090988

Zaheer T, Pal K, and Zaheer I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem. 2021; 100: 237-244. DOI: 10.1016/j.procbio.2020.09.028

Han J, Zhao D, Li D, Wang X, Jin Z, and Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers. 2018; 10(1): 31. DOI: 10.3390/polym10010031

Garg A, and Dewangan HK. Nanoparticles as adjuvants in vaccine delivery. Crit Rev Ther Drug Carr. 2020; 37(2): 183-204. DOI: 10.1615/CritRevTherDrugCarrierSyst.2020033273

Roth GA, Picece VC, Ou BS, Luo W, Pulendran B, and Appel EA. Designing spatial and temporal control of vaccine responses. Nat Rev Mater. 2022; 7(3): 174-195. DOI: 10.1038/s41578-021-00372-2

Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AA, Obeid MA, et al. Nanomaterials as a potential target for

infectious parasitic agents. Curr Drug Deliv. 2023. DOI: 10.2174/1567201820666230223085403

Qaemifar N, Borji H, and Adhami G (2023). The antiparasitic properties of allium sativum: Can it be used as a complementary treatment for echinococcosis?. J Lab Anim Res, 2(1): 1-5. Available at: https://jlar.rovedar.com/index.php/JLAR/article/view/14

Ernst LM, Casals E, Italiani P, Boraschi D, and Puntes V. The interactions between nanoparticles and the innate immune system from a nanotechnologist perspective. Nanomaterials. 2021; 11(11): 2991. DOI: 10.3390/nano11112991