Advancing Goat Genomics Verification and Applying GBTS Liquid Chip for Precision Breeding

Main Article Content

Umar Aziz
Abdul Rehman
Xiaolong Xu
Junru Zhu
Yonglong He
Zhanhang Wang
Li Fu
Fasih Ur Rehman
Jiayuan Li
Xugan Wang
Hanbing Yan
Xiaopeng An

Abstract

Genotyping by target sequencing (GBTS) liquid chip is a cutting-edge genomic tool that enables the efficient detection of genetic markers for economically important traits, including milk yield, fat content, and disease resistance, in milk goats. The present study aimed to review the development, validation, and application of the GBTS liquid chip in goat genomics, emphasizing its role in precision breeding. The methodology involved extracting DNA from different goat breeds, designing probes for specific gene markers, performing genotyping using the GBTS liquid chip, verifying detected single-nucleotide polymorphisms (SNPs) through whole-genome resequencing, and assessing chip repeatability across batches. Sequence alignment, variant calling, and genome-wide association studies were conducted using bioinformatics tools such as BWA, PLINK, and GATK to ensure accurate identification of SNP loci. Advanced statistical methods, including principal component analysis and phylogenetic tree construction, are employed to demonstrate the chip's effectiveness in distinguishing genetic diversity and relationships among breeds. Functional annotation through databases such as Ensembl and KEGG helped interpret the biological roles of identified markers, while genomic prediction models, including genomic best linear unbiased prediction and BayesC, estimate breeding values for targeted selection. This integrated strategy, combining high-throughput genomic technologies, microfluidic platforms, and computational analysis, demonstrated the potential of GBTS liquid chip technology to enhance goat breeding programs by improving productivity, conserving genetic diversity, and ensuring sustainability.

Article Details

How to Cite
Aziz, U., Rehman , A., Xu, X., Zhu, J., He, Y., Wang, Z., Fu, L., Ur Rehman, F., Li, J., Wang, X., Yan, H., & An, X. (2025). Advancing Goat Genomics Verification and Applying GBTS Liquid Chip for Precision Breeding. Journal of Veterinary Physiology and Pathology, 4(3), 20–30. https://doi.org/10.58803/jvpp.v4i3.60
Section
Review Article

References

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genet. 2001; 157(4): 1819-1829. DOI: 10.1093/genetics/157.4.1819

Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, et al. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed. 2019; 39(3): 1-12. DOI: 10.1007/s11032-019-0940-4

Loukovitis D, Siasiou A, Mitsopoulos I, Lymberopoulos AG, Laga V, and Chatziplis D. Genetic diversity of Greek sheep breeds and transhumant populations utilizing microsatellite markers. Small Rumin Res. 2016; 136: 238-242. DOI: 10.1016/j.smallrumres.2016.02.008

Gutierrez AP, Matika O, Bean TP, and Houston RD. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): Potential of low-density marker panels for breeding value prediction. Front Genet. 2018; 9: 391. DOI: 10.3389/fgene.2018.00391

Xiao Q, Tang M, Li Q, Dong P, Cheng Y, Deng D, et al. Development of microsatellite markers from transcriptome of Eriocheir sinensis and their application in multiplex PCR panels. Animals. 2024; 14(22): 3200. DOI: 10.3390/ani14223200

Tolone M, Sardina MT, Criscione A, Lasagna E, Senczuk G, Rizzuto I, et al. High-density single nucleotide polymorphism markers reveal the population structure of 2 local chicken genetic resources. Poult Sci. 2023; 102(7): 102692. DOI: 10.1016/j.psj.2023.102692

Mandal A, Varkey M, Mani AK, Sobhanan SP, and Thampi-Samraj YC. Identification of Indian mangrove mud crab genus Scylla spp. (Brachyura: Portunidae) using RAPD and PCR-RFLP markers. J Shellfish Res. 2014; 33(2): 503-510. DOI: 10.2983/035.033.0219

Ma H, Cui H, Ma C, and Ma L. High genetic diversity and low differentiation in mud crab (Scylla paramamosain) along the southeastern coast of China revealed by microsatellite markers. J Exp Biol. 2012; 215(17): 3120-3125. DOI: 10.1242/jeb.071654

Wang J, Miao L, Chen B, Zhao J, Ke Q, Pu F, et al. Development and evaluation of liquid SNP array for large yellow croaker (Larimichthys crocea). Aquaculture. 2023; 563: 739021. DOI: 10.1016/j.aquaculture.2022.739021

Ye S, Zhou X, Ouyang M, Cui W, Xiang Z, Zhang Y, et al. Development and validation of a 40 K liquid SNP array for the mud crab (Scylla paramamosain). Aquaculture. 2025; 594: 741394. DOI: 10.1016/j.aquaculture.2024.741394

Bokhari SH, and Sauer JR. A parallel graph decomposition algorithm for DNA sequencing with nanopores. Bioinformatics. 2005; 21(7): 889-896. DOI: 10.1093/bioinformatics/bti129

Clark MS, Elgar G. Fugu rubripes: A fish model genome. In: Clark MS, editor. Comparative genomics. Boston, MA: Springer; 2000. p. 71-96. DOI: 10.1007/978-1-4615-4657-3_4

Elsik CG, Unni DR, Diesh CM, Tayal A, Emery ML, Nguyen HN, et al. Bovine genome database: New tools for gleaning function from the Bos taurus genome. Nucl Acids Res. 2016; 44(D1): D834-D839. DOI: 10.1093/nar/gkv1077

Guan S, Li W, Jin H, Zhang L, and Liu G. Development and validation of a 54K genome-wide liquid SNP chip panel by target sequencing for dairy goat. Genes. 2023; 14(5): 1122. 10.3390/genes14051122

Hajirasouliha I, Hormozdiari F, Alkan C, Kidd JM, Birol I, Eichler EE, et al. Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics. 2010; 26(10): 1277-1283. DOI: 10.1093/bioinformatics/btq152

Huang DW, Sherman BT, and Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1): 44-57. DOI: 10.1038/nprot.2008.211

Nystrom SL, and McKay DJ. Memes: A motif analysis environment in R using tools from the MEME Suite. PLoS Comput Biol. 2021; 17(9): e1008991. DOI: 10.1371/journal.pcbi.1008991

Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, et al. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Mol Plant. 2017; 10(8): 1047-1064. DOI: 10.1016/j.molp.2017.06.008

Singh A, Kumar A, Thakur MS, Khare V, Jain A, and Tiwari SP. Genetic analysis of milk minerals in dairy cattle: A review. J Appl Genet. 2024; 65(2): 375-381. DOI: 10.1007/s13353-024-00832-9

Song H, Dong T, Yan X, Wang W, Tian Z, Sun A, and Zhang Z. Genomic selection and its research progress in aquaculture breeding. Rev Aquacult. 2023; 15(1): 274-291. DOI: 10.1111/raq.12716

Tamura K, Stecher G, and Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021; 38(7): 3022-3027. DOI: 10.1093/molbev/msab120

Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics. 2015; 16(1): 969. DOI: 10.1186/s12864-015-2117-9

Tsai HY, Matika O, Edwards SMK, Antolín-Sánchez R, Hamilton A, Guy DR, et al. Genotype imputation to improve the cost-efficiency of genomic selection in farmed Atlantic salmon. G3 Genes Genom Genet. 2017; 7(4): 1377-1383. 10.1534/g3.117.040717

Wang Y, Zhao Y, Bollas A, Wang Y, and Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021; 39(11): 1348-1365. DOI: 10.1038/s41587-021-01108-x

Wu Y, Zhou Z, Pan Y, Zhao J, Bai H, Chen B, and Xu P. GWAS identified candidate variants and genes associated with acute heat tolerance of large yellow croaker. Aquaculture. 2021; 540: 736696. DOI: 10.1016/j.aquaculture.2021.736696

Wu Z, Hu Z, Gao Y, Xia Y, Zhang X, and Jiang Z. A computational approach based on weighted gene co-expression network analysis for biomarkers analysis of Parkinson’s disease and construction of diagnostic model. Front Comput Neurosci. 2023; 16: 1095676. DOI: 10.3389/fncom.2022.1095676

Xu J, Zhao Z, Zhang X, Zheng X, Li J, Jiang Y, et al. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics. 2014; 15(1): 307. DOI: 10.1186/1471-2164-15-307

Yáñez JM, Barría A, López ME, Moen T, Garcia BF, Yoshida GM, et al. Genome-wide association and genomic selection in aquaculture. Rev Aquacult. 2023; 15(2): 645-675. DOI: 10.1111/raq.12750

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010; 42(7): 565-569. DOI: 10.1038/ng.608

Yang J, Lee SH, Goddard ME, and Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011; 88(1): 76-82. DOI: 10.1016/j.ajhg.2010.11.011

Yang J, and Pan Y. Analysis on teaching methods of industrial and commercial management based on knowledge transform expansion model of “SECI.” Int J Educ Manag Eng. 2011; 1(6): 76-82. DOI: 10.5815/ijeme.2011.06.12

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, and Yuan X. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinf. 2021; 19(4): 619-628. DOI: 10.1016/j.gpb.2020.10.007

Yu Y, Luo Z, Wang Q, Zhang Q, Zhang X, Xiang J, et al. Development of high throughput SNP genotyping approach using target sequencing in Pacific white shrimp and its application for genetic study. Aquaculture. 2020; 528: 735549. DOI: 10.1016/j.aquaculture.2020.735549

Zhang DY, Zhang XX, Li FD, Yuan LF, Li XL, Zhang YK, et al. Whole-genome resequencing reveals molecular imprints of anthropogenic and natural selection in wild and domesticated sheep. Zool Res. 2022; 43(5): 695-705. DOI: 10.24272/j.issn.2095-8137.2022.124

Zhang K, Li A, Qi H, Yang Q, Du M, Wang X, et al. The development of a 30 K SNP genotyping tool targeting genomic regions of temperature and salinity adaptation in estuarine oyster. Aquaculture. 2023; 566: 739168. DOI: 10.1016/j.aquaculture.2022.739168

Zhao J, Bai H, Ke Q, Li B, Zhou Z, Wang H, et al. Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture. 2021; 531: 735786. DOI: 10.1016/j.aquaculture.2020.735786

Zhou Q, Chen YD, Lu S, Liu Y, Xu WT, Li YZ, et al. Development of a 50K SNP array for Japanese flounder and its application in genomic selection for disease resistance. Engineering. 2021; 7(3): 406-411. DOI: 10.1016/j.eng.2020.06.017

Zhou Q, Lu S, Liu Y, Zhou B, and Chen S. Development of a 20 K SNP array for the leopard coral grouper, Plectropomus leopardus. Aquaculture. 2024; 578: 740079. DOI: 10.1016/j.aquaculture.2023.740079

Zhou T, Chen B, Ke Q, Zhao J, Pu F, Wu Y, et al. Development and evaluation of a high-throughput single-nucleotide polymorphism array for large yellow croaker (Larimichthys crocea). Front Genet. 2020; 11: 571751. DOI: 10.3389/fgene.2020.571751

Hulsegge I, Bouwman AC, and Derks MFL. genomeprofile: Unveiling the genomic profile for livestock breeding through comprehensive SNP array-based genotyping. Anim Genet. 2024; 55(5): 793-797. DOI: 10.1111/age.13466

Celus CS, Ahmad SF, Gangwar M, Kumar S, and Kumar A. Deciphering new insights into copy number variations as drivers of genomic diversity and adaptation in farm animal species. Gene. 2025; 939: 149159. DOI: 10.1016/j.gene.2024.149159

Çelik Ş. Bibliometric analysis of genomic selection in breeding of animal from 1993 to 2024: Global trends and advancements. Front. Genet. 15: 1402140. DOI: 10.3389/fgene.2024.1402140

Gayo P, Berbel C, and Manchado M. Transcriptomic signatures and genomic regions associated with growth in the flatfish Senegalese sole. Aquaculture. 2024; 592: 741234. DOI: 10.1016/j.aquaculture.2024.741234

Zhu B, Niu H, Zhang W, Wang Z, Liang Y, Guan L, et al. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics. 2017; 18(1): 464. DOI: 10.1186/s12864-017-3847-7