Bridging Policy and Practice for Colistin Use in Veterinary Settings: A One Health Approach for Resource-Limited Regions
Main Article Content
Abstract
Antimicrobial resistance (AMR) is an important public health problem worldwide in humans and animals. Colistin is extensively used in veterinary medicine to control and treat enteric infections in poultry and swine, emphasizing the need to consider a One Health approach when dealing with colistin resistance. The present study aimed to provide a concise overview of the global antimicrobial resistance burden and the critical status of colistin within the World Health Organization (WHO) and European Medicines Agency (EMA) frameworks. The WHO classifies colistin in its Access, Watch, and Reserve (AWaRe) class reserve group, and the EMA restricts its use in veterinary medicine, categorizing colistin as restricted (Category B). The discovery of plasmid-mediated colistin-resistance (mcr-1) genes and their worldwide transmission to humans, animals, food, and the environment in 2015 increased urgent concerns about the continued use of colistin. The present study analyzed 44 open-access articles published between 2015 and 2025, sourced from PubMed, Scopus, and WHO/EMA databases. It investigated resistance to colistin in Escherichia coli, the spread and control of mcr genes, particularly in Africa and North America. Colistimethate sodium is for human use, and colistin sulfate is more commonly used in veterinary medicine. Over 10 variants of the mcr-1 gene have been detected in humans, animals, food, and environmental samples. In North Africa, mcr-positive isolates have been identified in both poultry and humans, reflecting the interconnected risks. The findings illustrated a persistent gap between global policies and local practice, driven by limited alternatives, weak diagnostic capacity, and uneven regulatory enforcement. As a result, colistin continues to be used despite the increasing risks of resistance. A practical One Health approach is essential to preserve this critical antibiotic. This approach should strengthen diagnostic tools, improve surveillance systems, provide training for farmers and veterinarians, and harmonize global policies with local needs, aligning with WHO AWaRe and EMA guidelines.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022; 399(10325): 629-655. DOI: 10.1016/S0140-6736(21)02724-0
Azzam A, Salem H, Nazih M, Lotfy EM, Hassan FE, and Khaled H. Prevalence, trends, and molecular insights into colistin resistance among gram-negative bacteria in Egypt: A systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2025; 24: 32. DOI: 10.1186/s12941-025-00799-3
World health organization (WHO). Antibiotics portal: AWaRe groups page. World Health Organization, 2025. Available at: https://aware.essentialmeds.org/groups
Zanichelli V, Sharland M, Cappello B, Moja L, Getahun H, Pessoa-Silva C, et al. The WHO AWaRe (Access, Watch, Reserve) antibiotic book and prevention of antimicrobial resistance. Bull World Health Organ. 2023; 101(4): 290-296. DOI: 10.2471/BLT.22.288614
Schmerold I, van Geijlswijk I, and Gehring R. European regulations on the use of antibiotics in veterinary medicine. Eur J Pharm Sci. 2023; 189: 106473. DOI: 10.1016/j.ejps.2023.106473
Bakleh MZ, Kohailan M, Marwan M, and Alhaj Sulaiman A. A systematic review and comprehensive analysis of mcr gene prevalence in bacterial isolates in Arab countries. Antibiotics. 2024; 13(10): 958. DOI: 10.3390/antibiotics13100958
Bastidas-Caldes C, de Waard JH, Salgado MS, Villacís MJ, Coral-Almeida M, Yamamoto Y, et al. Worldwide prevalence of mcr-mediated colistin-resistance Escherichia coli in isolates of clinical samples, healthy humans, and livestock: A systematic review and meta-analysis. Pathogens. 2022; 11(6): 659. DOI: 10.3390/pathogens11060659
Sabnis A, Hagart KLH, Klöckner A, Becce M, Evans LE, Furniss RCD, et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife. 2021; 10: e65836. DOI: 10.7554/eLife.65836
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, and Yadav D. A review on colistin resistance: An antibiotic of last resort. Microorganisms. 2024; 12(4): 772. DOI: 10.3390/microorganisms12040772
Suk P, Rychlíčková J, Součková L, Kubíčková V, and Urbánek K. Changes of colistin pharmacokinetics in critically ill patients due to the extracorporeal membrane oxygenation: Protocol for the COL-ECMO2022 trial – a prospective, non-randomised, open-label phase IV pharmacokinetic clinical trial. BMJ Open. 2023; 13(7): e071649. DOI: 10.1136/bmjopen-2023-071649
Xie Y, Liu Z, Liang P, Wang D, Li Q, Gao M, et al. Colistimethate sodium is efficacious and safe for the management of sepsis in hematological disease patients: A retrospective study in China. Front Cell Infect Microbiol. 2025; 15: 1613414. DOI: 10.3389/fcimb.2025.1613414
Mead A, Richez P, Azzariti S, and Pelligand L. Pharmacokinetics of colistin in the gastrointestinal tract of poultry following dosing via drinking water and its bactericidal impact on enteric Escherichia coli. Front Vet Sci. 2021; 8: 698135. DOI: 10.3389/fvets.2021.698135
Rychlíčková J, Kubíčková V, Suk P, and Urbánek K. Challenges of colistin use in ICU and therapeutic drug monitoring: A literature review. Antibiotics. 2023; 12(3): 437. DOI: 10.3390/antibiotics12030437
Xu P, Xu L, Ji H, Song Y, Zhang K, Ren X, et al. Analysis and comparison of adverse events of colistin administered by different routes based on the FAERS database. Sci Rep. 2025; 15(1): 10384. DOI: 10.1038/s41598-025-94947-6
Aysert-Yildiz P, Ozgen-Top O, Senturk AF, Kanik S, Ozger HS, and Dizbay M. Polymyxin B vs colistin: The comparison of neurotoxic and nephrotoxic effects of the two polymyxins. BMC Infect Dis. 2024; 24(1): 862. DOI: 10.1186/s12879-024-09759-2
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and humans in China: A microbiological and molecular biological study. Lancet Infect Dis. 2016; 16(2): 161-168. DOI: 10.1016/S1473-3099(15)00424-7
European medicines agency (EMA). Categorisation of antibiotics in the European Union. Committee for Medicinal Products for Veterinary Use (CVMP), and Committee for Medicinal Products for Human Use (CHMP). Amsterdam: European Medicines Agency; 2019. Available at: https://ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf
Wang R, Van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018; 9(1): 1179. DOI: 10.1038/s41467-018-03205-z
Vlad MA, Lixandru BE, Muntean AA, Trandafir I, Luncă C, and Tuchiluş C. First report of mcr-1-carrying Escherichia coli isolated from a clinical sample in north-east Romania. Microorganisms. 2024; 12(12): 2461. DOI: 10.3390/microorganisms12122461
Feng J, Xu Z, Zhuang Y, Liu M, Luo J, Wu Y, et al. The prevalence, diagnosis, and dissemination of mcr-1 in colistin resistance: Progress and challenge. Decod Infect Trans. 2023; 1: 100007. DOI: 10.1016/j.dcit.2023.100007
Nang SC, Li J, and Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol. 2019; 45(2): 131-161. DOI: 10.1080/1040841X.2018.1492902
Touati A, Ibrahim NA, Mairi A, Kirat H, Basher NS, and Idres T. One health at risk: Plasmid-mediated spread of mcr-1 across clinical, agricultural, and environmental ecosystems. Antibiotics. 2025; 14(5): 506. DOI: 10.3390/antibiotics14050506
Miftode IL, Vătǎ A, Miftode RŞ, Oancea AF, Pasăre MA, Parangă TG, et al. The gut microbiome and colistin resistance: A hidden driver of antimicrobial failure. Int J Mol Sci. 2025; 26(18): 8899. DOI: 10.3390/ijms26188899
Martiny HM, Munk P, Brinch C, Szarvas J, Aarestrup FM, and Petersen TN. Global distribution of mcr gene variants in 214K metagenomic samples. Msystems. 2022; 7(2): e00105-22. DOI: 10.1128/msystems.00105-22
Liu MC, Jian Z, Liu W, Li J, and Pei N. One health analysis of mcr-carrying plasmids and emergence of mcr-10.1 in three species of Klebsiella recovered from humans in China. Microbiol Spectr. 2022; 10(6): e0230622. DOI: 10.1128/spectrum.02306-22
Osisiogu EU, Mahmoud FC, Waqas FB, Singh B, Feglo PK, and Duedu KO. Environmental mediation of colistin resistance in the African context: A systematic scoping review. J Glob Antimicrob Resist. 2025; 41: 39-43. DOI: 10.1016/j.jgar.2024.12.002
Berrazeg M, Hadjadj L, Ayad A, Drissi M, and Rolain JM. First detected human case in Algeria of mcr-1 plasmid-mediated colistin resistance in a clinical Escherichia coli isolate. Antimicrob Agents Chemother. 2016; 60(11): 6996-6997. DOI: 10.1128/AAC.01117-16
Halfaoui Z, Rahab H, Achek R, and Menoueri MN. First report of detection of mcr-1 and virulence genes in avian pathogenic Escherichia coli in the center of Algeria. Iran J Vet Res. 2024; 25(1): 5-15. DOI: 10.22099/IJVR.2024.47413.6840
Di Francesco A, Salvatore D, Sakhria S, Bertelloni F, Catelli E, Ben Yahia S, et al. Colistin resistance genes in broiler chickens in Tunisia. Animals. 2023; 13(8): 1409. DOI: 10.3390/ani13081409
Ajulo S, and Awosile B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS One. 2024; 19(2): e0297921. DOI: 10.1371/journal.pone.0297921
World health organization (WHO). Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022. Available at: https://who.int/publications/i/item/9789240062702
Ayobami O, Brinkwirth S, Eckmanns T, and Markwart R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis. Emerg Microbes Infect. 2022; 11(1): 443-451. DOI: 10.1080/22221751.2022.2030196
Nazir A, Nazir A, Zuhair V, Aman S, Sadiq SUR, Hasan AH, et al. The global challenge of antimicrobial resistance: Mechanisms, case studies, and mitigation approaches. Health Sci Rep. 2025; 8(7): e71077. DOI: 10.1002/hsr2.71077
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, and Dias da Silva D. An overview of the recent advances in antimicrobial resistance. Microorganisms. 2024; 12(9): 1920. DOI: 10.3390/microorganisms12091920
Mankhomwa J, Tolhurst R, M’biya E, Chikowe I, Banda P, Mussa J, et al. A qualitative study of antibiotic use practices in intensive small-scale farming in urban and peri-urban Blantyre, Malawi: Implications for antimicrobial resistance. Front Vet Sci. 2022; 9: 876513. DOI: 10.3389/fvets.2022.876513
Koudokpon H, Lègba B, Sintondji K, Kissira I, Kounou A, Guindo I, et al. Empowering public health: Building advanced molecular surveillance in resource-limited settings through collaboration and capacity-building. Front Health Serv. 2024; 4: 1289394. DOI: 10.3389/frhs.2024.1289394
Musa K, Okoliegbe I, Abdalaziz T, Aboushady AT, Stelling J, and Gould IM. Laboratory surveillance, quality management, and its role in addressing antimicrobial resistance in Africa: A narrative review. Antibiotics. 2023; 12(8): 1313. DOI: 10.3390/antibiotics12081313
Alhassan JAK, and Abdallah CK. Health system interventions and responses to antimicrobial resistance: A scoping review of evidence from 15 African countries. PLOS Glob Public Health. 2024; 4(9): e0003688. DOI: 10.1371/journal.pgph.0003688
Anyanwu MU, Jaja IF, Oguttu JW, Jaja CJ, Chah KF, and Shodeinde Shoyinka V. Is Africa ready for mobile colistin resistance threat?. Infect Ecol Epidemiol. 2021; 11(1): 1962781. DOI: 10.1080/20008686.2021.1962781
Gehring R, Mochel JP, and Schmerold I. Understanding the background and clinical significance of the WHO, WOAH, and EMA classifications of antimicrobials to mitigate antimicrobial resistance. Front Vet Sci. 2023; 10: 1153048. DOI: 10.3389/fvets.2023.1153048
European Union (EU). Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing directive 2001/82/EC. Eur-Lex, European Union. 2019; L4: 43-167. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0006
World health organization (WHO). One health joint plan of action (2022-2026). Working together for the health of humans, animals, plants, and the environment. Rome: World Health Organization; 2022. Available at: https://who.int/publications/i/item/9789240059139
Mendelson M, and Matsoso MP. Guest editorial: The world health organization global action plan for antimicrobial resistance. S Afr Med J. 2015; 105(5): 325. DOI: 10.7196/samj.9644
World health organization (WHO). Implementing the global action plan on antimicrobial resistance: First quadripartite biennial report. Geneva: World health organization, food and agriculture organization of the United nations, United nations environment Programme and world organisation for animal health; 2024. Available at: https://who.int/publications/i/item/9789240074668